Логическое высказывание

Логическое высказывание

Логическое высказывание — утверждение, которому всегда можно поставить в соответствие одно из двух логических значений: ложь (0, ложно, false) или истина (1, истинно, true). Логическое высказывание принято обозначать заглавными латинскими буквами. Высказывательной формой называется логическое высказывание, в котором один из объектов заменён переменной. При подстановке вместо переменной какого-либо значения высказывательная форма превращается в высказывание

.

Пример: A(x) = «В городе x идет дождь.» A — высказывательная форма, x — объект

.

Отрицание логического высказывания — логическое высказывание, принимающее значение "истинно", если исходное высказывание ложно, и наоборот

.

Конъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны

.

Дизъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно

.

Импликация двух логических высказываний A и B — логическое высказывание, ложное только тогда, когда B ложно, а A истинно

.

Равносильность (эквивалентность) двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны

.

Кванторное логическое высказывание с квантором всеобщности (\forall x A(x)) — логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно

.

Кванторное логическое высказывание с квантором существования (\exists x A(x)) — логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно

.

См. также

Wikimedia Foundation. 2010.