Уран (хим. элемент)

Уран (U)
Атомный номер 92
Внешний вид простого вещества
Свойства атома
Атомная масса
(молярная масса)
238.0289 а. е. м. (г/моль)
Радиус атома 138 пм
Энергия ионизации
(первый электрон)
686, 4(7, 11) кДж/моль (эВ)
Электронная конфигурация [Rn] 5f3 6d1 7s2
Химические свойства
Ковалентный радиус 142 пм
Радиус иона (+6e) 80 (+4e) 97 пм
Электроотрицательность
(по Полингу)
1, 38
Электродный потенциал U←U4+ -1, 38В
U←U3+ -1, 66В
U←U2+ -0, 1В
Степени окисления 6, 5, 4, 3
Термодинамические свойства простого вещества
Плотность 19, 05 г/см³
Удельная теплоёмкость 0, 115 Дж/(K·моль)
Теплопроводность 27, 5 Вт/(м·K)
Температура плавления 1405, 5 K
Теплота плавления 12, 6 кДж/моль
Температура кипения 4018 K
Теплота испарения 417 кДж/моль
Молярный объём 12, 5 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Период решётки 2, 850 Å
Отношение c/a n/a
Температура Дебая n/a K

Ура́н — химический элемент с атомным номером 92 в периодической системе, атомная масса 238, 029; обозначается символом U (латUranium), относится к семейству актиноидов

.

Содержание

История

Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики

.

Нахождение в природе

Уранинитовая руда

Уран широко распространён в природе. Кларк урана составляет 1·10-3% (вес.). Количество урана в слое литосферы толщиной 20 км оценивается в 1, 3·1014 т

.

Основная масса урана находится в кислых породах с высоким содержанием кремния. Важнейшими урановыми рудами являются урановая смолка (уранинит) и карнотит

.
Минерал Основной состав минерала Содержание урана, %
Уранинит UO2, UO3 + ThO2, CeO2 65-74
Карнотит K2(UO2)2(VO4)2·2H2O ~50
Казолит PbO2·UO3·SiO2·H2O ~40
Самарскит (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O6 3.15-14
Браннерит (U, Ca, Fe, Y, Th)3Ti5O15 40
Тюямунит CaO·2UO3·V2O5·nH2O 50-60
Цейнерит Cu(UO2)2(AsO4)2·nH2O 50-53
Отенит Ca(UO2)2(PO4)2·nH2O ~50
Шрекингерит Ca3NaUO2(CO3)3SO4(OH)·9H2O 25
Уранофан CaO·UO2·2SiO2·6H2O ~57
Фергюсонит (Y, Ce)(Fe, U)(Nb, Ta)O4 0.2-8
Торбернит Cu(UO2)2(PO4)2·nH2O ~50
Коффинит U(SiO4)1-x(OH)4x ~50

Изотопы

Природный уран состоит из смеси трёх изотопов: 238U — 99, 2739 %, период полураспада T1/2 = 4, 468×109 лет, 235U — 0, 7024 % (T1/2 = 7, 038×108 лет) и 234U — 0, 0057 % (T1/2 = 2, 455×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U

.

Радиоактивность природного урана обусловлена в основном изотопами 235U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U

.

Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них — 233U (T1/2 = 1, 62×105лет) получается при облучении тория нейтронами и способен к спонтанному делению тепловыми нейтронами

.

Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов

.

Получение

Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран

).

Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, Например, в урановой смолке, уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния

.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия

).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран

.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему

.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно

.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр

).

После этих операций уран переводят в твёрдое состояние — в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2

.

На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния

.

Физические свойства

Уран — очень тяжёлый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667, 7 °C), бета (четырёхугольная, стабильна от 667, 7 °C до 774, 8 °C), гамма (с объёмно центрированной кубической структурой, существующей от 774, 8 °C до точки плавления

).

Радиоактивные свойства некоторых изотопов урана (выделены природные изотопы

):
Массовое число Период полураспада Тип распада
234 2, 45·105 лет α
235 7, 13·108 лет α
236 2, 39·107 лет α
237 6, 75 сут. β-
238 4, 49·109 лет α
239 23, 54 мин. β-
240 14 час. β-

Химические свойства

Уран может проявлять степени окисления от +III до +VI. Соединения урана(III) образуют неустойчивые растворы красного цвета и являются сильными восстановителями

:

4UCl3 + 2H2O → 3UCl4 + UO2 + H2

Соединения урана(IV) являются наиболее устойчивыми и образуют водные растворы зелёного цвета

.

Соединения урана(V) неустойчивы и легко диспропорционируют в водном растворе

:

2UO2Cl → UO2Cl2 + UO2

Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150—175 °C, образуя U3O8. При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана. Уран растворяется в соляной, азотной и других кислотах, образуя четырёхвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов, как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться. Уран имеет четыре степени окисления — III—VI. Шестивалентные соединения включают в себя триокись урана (окись уранила) UO3 и уранилхлорид урана UO2Cl2. Тетрахлорид урана UCl4 и диоксид урана UO2 — примеры четырёхвалентного урана. Вещества, содержащие четырёхвалентный уран, обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид, распадаются в присутствии яркого света или органики

.

Применение

Ядерное топливо

Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии . Выделение изотопа U235 из природного урана — сложная технологическая проблема, (см. разделение изотопов

).

Изотоп U238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией

).

В результате захвата нейтрона с последующим β-распадом 238U может превращаться в 239Pu, который затем используется как ядерное топливо

.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг

).

Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей

.

Другие сферы применения

Обеднённый уран

После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6

).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью

.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин

.

Сердечники бронебойных снарядов

Наконечник (вкладыш) снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана.

Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. При сплавлении с 2 % Mo или 0, 75 % Ti и термической обработке (быстрая закалка разогретого до 850 °C металла в воде или масле, дальнейшее выдерживание при 450 °C 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость

.

Подобные сплавы типа «Стабилла» применяются в стреловидных оперенных снарядах танковых и противотанковых артиллерийских орудий

.

Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони (см. Пирофорность). Около 300 тонн обеднённого урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава

).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии[3]. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны

.

Впервые уран в качестве сердечника для снарядов был применен в Третьем рейхе

.

Обеднённый уран используется в современной танковой броне, Например, танка M-1 «Абрамс»

.

Физиологическое действие

В микроколичествах (10−5—10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких — 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г

.

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0, 015 мг/м³, для нерастворимых форм урана ПДК 0, 075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы

.

Разведанные запасы урана в мире

Добыча урана в мире

10 стран, ответственных за 94 % мировой добычи урана

Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 — 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок

).

Добыча по странам в тоннах по содержанию U на 2005—2006 гг

.
Страна 2005 год
Канада 11 410
Австралия 9044
Казахстан 4020
Россия 3570
США 1249
Украина 920
Китай 920

Добыча по компаниям в 2006 г

.

Добыча в России

На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав корпорации «ТВЭЛ»

.

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия

).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе

.

Добыча на Украине

Основное предприятие - Восточный горно-обогатительный комбинат в городе Жёлтые Воды

.

Стоимость

Несмотря на бытующие легенды о десятках тысяч долларов за килограммовые или даже грамовые количества урана, реальная его цена на рынке не очень высока — необогащённая окись урана U3O8 стоит порядка 200 американских долларов за килограмм [4]. Связано это с тем, что для запуска атомного реактора на необогащённом уране нужны десятки или даже сотни тонн топлива, а для изготовления ядерного оружия следует обогатить большое количество урана для получения пригодных для создания бомбы концентраций [5]

.

См. также

Ссылки

  1. [1]
  2. 1 2 3 4 5 Техническая энциклопедия 1927 года", том 24, столб. 596…597, статья «Уран»
  3. [2]
  4. [3]Цены на энергоносители по состоянию на 30 сентября 2007.
  5. [4]Статья про ядерное оружие, См. подраздел про урановую бомбу.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Уран (хим. элемент) — УРАН (Uranium), U, радиоактивный химический элемент III группы периодической системы, атомный номер 92, атомная масса 238,0289; относится к актиноидам; металл, tпл 1135°C. Уран главный элемент атомной энергетики (ядерное топливо), используется в… …   Иллюстрированный энциклопедический словарь

  • Уран (хим. элемент) — Уран (лат. Uranium), U, радиоактивный химический элемент III группы периодической системы Менделеева, относится к семейству актиноидов, атомный номер 92, атомная масса 238,029; металл. Природный У. состоит из смеси трёх изотопов: 238U √ 99,2739%… …   Большая советская энциклопедия

  • Уран (хим.) — U (Uran, uranium; при О = 16 атомн. вес U = 240) элемент с наибольшим атомным весом; все элементы, по атомному весу, помещаются между водородом и ураном. Это тяжелейший член металлической подгруппы VI группы периодической системы (см. Хром,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • УРАН — (греч. uranos небо). 1) бог неба, отец Сатурна, старейший из богов, по греч. мифол. 2) редкий металл, имеющий в чистом состоянии вид серебристых листочков. 3) большая планета, открытая Гершелем в 1781 г. Словарь иностранных слов, вошедших в… …   Словарь иностранных слов русского языка

  • Уран — радиоактивный хим. элемент, порядковый номер 92, ат. в. 238,07. По хим. свойствам может быть отнесен как к VI гр. периодической системы, так и к актиноидам, принадлежащим к III гр. В хим. соединениях проявляет валентности 3, 4, 5 и 6. Наиболее… …   Геологическая энциклопедия

  • УРАН — (лат. Uranium), U, радиоакт. хим. элемент III группы периодич. системы элементов, ат. н. 92, ат. масса 238,0289; относится к актиноидам. В природе, представлен тремя а радиоакт. изотопами: 234U (0,0055%, Т Ч2 =2,454 • 105 лет); 235U (0,7200%,… …   Физическая энциклопедия

  • УРАН — радиоактивный хим. элемент группы актиноидов; символ U (лат. Uranium), ат. н. 92, ат. м. 238,03. Природный У. состоит из трёх изотопов: 238U (99,27%), 235U и 234U. Накопление двух последних элементов в природных объектах, содержащих уран (горные… …   Большая политехническая энциклопедия

  • УРАН — 1) УРАН седьмая по порядку от Солнца планета Солнечной системы, относится к планетам гигантам. Ср. расстояние от Солнца 19,182 а. е. (2870 млн. км), период обращения вокруг Солнца 84 земных года, период вращения вокруг оси 17 ч 14,4 мин. Экватор… …   Естествознание. Энциклопедический словарь

  • УРАН — (лат. Uranium) хим. элемент из семейства актиноидов; символ U, ат. н. 92, ат. м. 238,0289. Радиоактивен, наиболее устойчивый изотоп 238U (период полураспада 4,51*109 лет). Назв. от планеты Уран. Серо стальной металл, плотн. 19 120 кг/м3; (пл 1134 …   Большой энциклопедический политехнический словарь

  • УРАН — (лат. Uranium) U, радиоактивный хим. элемент III гр. периодич. системы, ат. н. 92, ат. м. 238,0289; относится к ак тиноидам. Стабильных изотопов не имеет. Известно 16 изотопов с мас. ч. 226 240, 242; наиб. долгоживущие изотопы 234U (Т 1/2 2,45 …   Химическая энциклопедия

  • УРАН — УРАН, урана, и (устар.) УРАНИЙ, урания, мн. нет, муж. (от греч. uranos небо) (хим.). Химический элемент, белый металл, обладающий радиоактивными свойствами. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ — (от транс и уран) хим. радиоактивные элементы, располож. в периодич. системе Менделеева после урана и имеющие атомные номера Z больше 92. Из них элементы с Z от 93 до 103 относятся к актиноидам, элемент с Z = 104 (курчатовий) является аналогом… …   Большой энциклопедический политехнический словарь

  • ТОРИЙ — (дат. Thorium), хим. элемент III гр. периодич. системы, относится к актиноидам. Радиоактивен, наиболее устойчивый нуклид 232Th (период полураспада 1,4*1010 лет). Назв. от имени бога Тора. Серебристо белый металл; плотн. 11,724 г/см3, tпл 1750 оС …   Естествознание. Энциклопедический словарь

  • ТОРИЙ — естественный долгоживущий радиоактивный хим. элемент, символ Th (лат. Thorium), ат. н. 90, ат. м. 232,03; светло серый тугоплавкий металл, плотность 11724 кг/м3, tпл = 1750°С. Главным источником Т. служит минерал монацит. Т. важный материал… …   Большая политехническая энциклопедия

  • Периодическая законность химических элементов — После открытий Лавуазье (см.) понятие о химических элементах и простых телах так укрепилось, что их изучение положено в основу всех химических представлений, а вследствие того взошло и во все естествознание. Пришлось признать, что все вещества,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

Другие книги по запросу «Уран (хим. элемент)» >>